N- 23435
NarA R~ (1T790]

COMPUTER ENHANCEMENT
through

INTERPRETIVE TECHNIQUES

Semi-Annual Status Report

for the

National Aeronautics and Space Administration
Goddard Space Flight Center

under

Grant NGR 23 - 022 - 125

by

Garth H. Foster
Principal Investigator



I. Introduction

This study has as its thesis the improvement in thg usage 6f the
digital computer through the use of the technique of interpretation |
rather than the'compilation of higher ordered languages.

Nowadays'more and more compufer ﬁrograms in the scientific and
commercial sectors are being written in higher level languages such as
FORTRAN; AIGOL, PL/I, and COBOL. Sﬁch‘programs are compiled or trans-
lated to the machine language éf a specific machine and run in a pro-
duction environment, gene?ally that of multiprogramming.

The'rationale of this study_is that there are three areas where
interpretive techniques could enhance the periormance of'computers.

The first would be in those instaﬁces where interpreters could best
compilers in execution speeds. Investigating such a possibility
implies the restriction of the problems to areas in which both tech-
nigues could be applied and of course the use of higher level languages
in coding the problems., We shall discuss this further shortly.

The second way in which utility couid bé provided by interpreters
is that of trading machine cycles in execution speed for space in the
run time qode stream. The third way in which interpretation techniques
would be of value would obtain if the implementation of an interpreter
of a given language provides more effective use of programmer time in
the development of software and for problemsiwhich are to be run once
or only a very few number of times. In this context it is envisaged
that a given language would have two (and pefhaps more) implementa-
tions; one would be an interpreter on which the program developmenf
would be done and the other would be a compiler in which the production

work would be done. If the problem is to be run few enbugh times, then...



the interpreter only would be'usea. Here the number referred to as a
few depends upon the size and complexity of a program, the e%écution
and coméile time in addition to the interpreted run time, the cost of
the program development, and the number of compilations used before the
program may be run usefully for the first time. The three points of
view relative to interpretation given above sketch a range of capabili-
ties ranging from direct superiority to sometimes usefulness. We now

turn attention to detailing investigations in these areas.

ITI. Fundamental Choices

The equipment and machine configuration on which this study is
being conducted is an IBM System 360 Model 50 - I (512 K bytes) with
2_251h disk units. The operating system is the Syracuse University
Opérating System (SUOS) a modification of MVT IT release 18.6 ﬁsing a
HASP-1like spooling program to provide spooling‘and allocétion of ports
to interactive problem processors.

The interpretive system considered for this study is APIN360
(A Programming Ianguage for the System 360). More than just being the
time sharing available at this institution, APL was chosen for several
specific reasons. First, by the nature of an interpreter the input
source string is interpreted requiring syntax analysis and run time
elaboration of every statement every time it is encountered. ‘The im-
plication is that only if the language is imbued with powerful language
primitives and compact constructs,can there be a hope of absorbing the
overhead of interpretation. It is our judgment that APL comes closer
to this objective for a reasonable variety of problems than other

avalilable computer languages.



Next, the more condensed the source string the interpreted lan-
guage has, the higher the ratio of the size of the run time object pro-
gram of compiled code to the lenéth of the source to be interﬁreted.
This leads to better spéce trade offs for computer cycles lost in in-
terpretation. The terse nature of "good" APL code makes it a natural
choice in this context.

Finally, the spectrum of language processor implementation ranging
from interpreters to compilers has blurred with increased importance
placed on binding variables closer to execution, tracing and debugging
iaids, and incremental compilation. Thus, we do not exclude the possi-
bility of "smart" interpreters which enlarge the segment of the input code
string skanned in determining the environment for interpretation. This
would not be compilation since no code Would be saved and the process .
is so data and code sequence dependent that it can not be considered
compilation., In this respect P.S. Abrams [1] has already established
the power of such an approach. The advent of large scale micropro-
grammed computers, particularly those with writable control stores,
leads to the possibility executing a higher level language as the
native ianguage of the compuﬁer rather than machine language. The
structure of APL suggests that implementation of it in such a computer
as a native language is worthy of-further exploration.

In suggesting the principal compiler language we have chosen
FORTRAN IV which for IBM computgrs the choice has been FORTRAN v -4
(opt 2). FORTRAN is probably the most widely used language in this
country and the period of development of compilers for that language
suggests a wealth of experience from which improvemenfs havg come.

Other versions of FORTRAN including those kept in-core for load and go



operation will be referred to. PL/I may be considered although such

reflection has not been extensive at this time.

III. Relative Raws Speed

| Initial efforts were to examine some of the powerful APL program-
ming constructs from which more complicated progremming expressions
could be built. If the interpretive system can not'cqmpete on this
level, then it will not be able to compete on a more macroscopic level.
Reduction, inner and outer products are'thrée of the more obvious oper-
ations to ihvestigate.

The reduction expression x/156 for example generates the inte-
gers 1 through 56 (if the ORIGIN of indexing is 1) and the péir of
symbols x/ causes all of the number to be multiplied together.
Clearly this is equivalent to 56 factorial written in APL as !56

As a side comment this is the largest factorial which may be cal-

culated precisely in the System 360.

To execute 56 factorial as X/156
APL required an average of 3.9 60ths of a second of CPU time (but
not console time) to execute. On the other hand FORTRAN IV H(OPT=2)

required the following times (60ths of a second) to:

'COMPIIE LOAD and GO GO CPU time
VARIABIE WITH WITHOUT WITH WITHOUT
TYPE PRINTING PRINTING PRINTING PRINTING
Tl 746 611 20 15
R*4 769 608 21 22%
R*8 T4l 591 21 17




On the other hand, looking’at the summation of thé‘first 500
integers’(COming close to the limits placéd upon us by the standard 3AK
byte workspace) which in APL notation is: +/175OO takes 165.6 60ths.
of a second on the average (over iO trials).‘

The comparable figures in FCRTRAN are:

COMPIIE LOAD and GO GO step only
FORTRAN 60ths of a second 60ths of a secpnd
VARIABIE WITH WITHOUT - WITH WITHOUT
TYFE PRINTING PRINTING PRINTING PRINTING
- I*h Thl 600 17 16
R¥L 605 614 * 48 48
R*8 635 Eun* L7 L8

In the first instance APL appears to be agbout 5 times faster than
the GO step for FORTRAN whereas in the second case the GO step in
* FORTRAN is anywhere from 3.5 to 9.75 times as fast as APL.

Several observations are in order.

1) In APL in-both of the reduction cases cited all of the data is
generated and temporarily stored and theq the multiplications or addi-
tions are performed. The compiled code on the other hand calculates
the product or sum as a part of a DO loop, thus using less transient
core space than APL. .This is an inherent price due to the interactive
nature of the system and protecting the workspace enviromment in the
implementation of the interpreter. In other words once the code has
been passed APL does not back up. Where the data is‘present in the en-
vironmment and not required to be generated, the overhead of interpreta-
tiﬁn many be spread somewhat further.- This is true eveﬁ when data has
to be generated. Tor example consider that two APL reduction expres-
sions+/12000 and +/2000pl, which sum the first 2000 integers and
2000 ones; have execution times which average 46.7 and 44,1 60ths of a

second, respectively. Clearly the cost of generating 2000 different



integers is not much higher than generating 2000 constant values of one.
Since the time for +/1L averages 1.4 60ths of a second, thus we see
that there is a small amount of overhead but when we’ sum the first 7500
~integers rather than the first 2000 we do ?oughly 3.75 times as many

operations at an expenditure of 3.6 as much time.

2) ‘There are improvementsAinvbotg‘compile,'load and go as well as
Jjust the go step in almost all cases when there is no printing required
in the FéRTRAN program formulation. Those cases in which no improve-
ment is seen in the timings are marked with an asterisk; these probably
follow a similar pattern but it has been masked by system timer inaccu-
racies. The reduction in times are in areas in which FORTRAN has its
closest approach to being interpretive, that is in‘I/O and its associ-
-ated format control. |

Thus compiled FORTRAN programs can suffer some interpretive degra-
dation when a great deal of output using mahy formats is required. The
closer that we seek to having control at run_time the more willing we

have traditionally been willing to give up execution speed.

3) The compile times for a‘fiYéd FORTRAN variable type are some-
what constant as one might expect and one might ask how should these
times be considered,'rélative to the GO step. 'we might charge the com-
pile and link editing times off against a number of program runs and

~ ask where the break even point would be for

%(Compile, Load and Go .- Go> + Go = APL
time time~ time time

S0

NQ—’-(_Cdmpile, Load and Go - Go> + APL - GO

The positive N would then be a figure of merit. In the first case



{

a positive N does not exist and in the second illustrative case N is 5.

In the previouély mentioned side cases of +/!2000 and +/2000pl

(having APL times of 46.7 and 44.1 60ths of a second) we have compara-

ble FORTRAN times (with printing) of:

+/12000 +/200001
COMPIIE, LOAD Go COMPIIE, LOAD Go
VARIABIE and GO and GO
TYPE 60ths 60ths 60ths 60ths
TI*k 723 21 Th1 22
R¥*b4 715 26 761 25
R*8 646 .22 734 21

h)> It should be noted in all cases cited if REAL variables are
- required there are some advantages in using R¥8 even when R¥4 will
suffice,

A number of preliminary steps in examining the efficiencies of
inner and outer product evaluations in APL compared with comparable
"mini"-programs written in FORTRAN have been undertaken.

Typical of these is the inner produét represented»by the execution of
the expressions

De33p 19
and then timing

D+ LD

In APL this timed to 2.4 60ths of a second. In FORTRAN 4 the com-

parable times are

FORTRAN COMPILE GO
VARIABLE LOAD and only
TYPE - GO (60ths) (60ths)

Tk 684 19
Rk - 854 19



8

Once again there does not exist an N such that if thé compiled version
were - run N times the compilation overhead could be absorbed,

The inner product does not have significance as far as we know,
(DL. +D gives the shortest 2 leg trip through a distance graph), but
was chosen to use simple functions either réadily available in a compu-

ter's machine language or easily synthesized.

IV. Core Savings at Run Time with an Interpretive System.

For the sake of comparison we again consider a rather trivial pro-
gramming problem, that is: Write a generalized routine which for arbi-
trarily named parameters tékes the value of R and adds 5 to it and
assignes the value of the reult tohvariable Za

In APL this would be written:

VZ¢«F R
[1] 2«5 +R

v
The total amount of space required is 68 bytes, 40 of which is

header overhead.
Disregarding the fact that the APL expression works independent of .

whether the argument of F is a scalar, vector, matrix or an array of
higher rank and the size of programs be guoted is for scalar R only,
we have for similasr programs written in assembler (BAL), FORTRAN IV G,
WATFIV (in core extended FORTRAN), PL/I F, PL/C (an in core PL/I subset)

the following core map sizes:

Processor Size in bytes
Assembler 26
FORTRANIV G 120

WATFIV 140

PL/T (F) 510

PL/I ¢ 550




The differences of- the coding.sizes between assembler and the
FOBTRANS may be ﬁresumed to arise from tighter code and complete con-
trol in function calling.and handling of paraméters. ‘'The added sizes
of the use of PL/T processors results in part from a difference in
'languageAphilosophy and such considerations as default parameters.

Part of those size differences however come from the fact that symbol
’table maps and other conveniences for program tracing, debugging, and
maintenance are generated for the.Pi/varocesSors. Such conveniences
are usually a facility found in interpretive systems and this should be
kepf in mind when either trying to write'off the extra size in the com;
piler based system or when keeping in mind the size of the interpreter
generally residing in core.

Even at that, the run time'packages can be significant for ordina-
ry programs; however, for FORTRAN programs equivalent to the APL ex-
pressions given earlier the run time load modules are overbéaring. For
example, the FORTRAN program for x/56 has the following program énd
load module sizes.

FORTRAN FORTRAN LOAD

VARTABIE PROGRAM MODUIE

TYPE SI7E’ (BYTES) SIZE (BYTES)
Tk 320 20,696
R¥*k 30k 20,680
R*8 312 20,688

Load modéles of sizes similar to these hold for the other examples
including the program equivalent to Z «5 + R.

While the surface has only been scratched it appears that on the
microscopic level APL has a good chance to compete in code space densi-

ty considerations.



10

Overall, if APL succeeds in competition with a;compiled language
it will be partly because those.of us in computing activity have not
questioned §ufficiéntly the overhead costs that present batch systems
have in.their operation. |

The one program which we have been supplied by NASA which has been
coded both in FORTRAN and APL and which may be taken to be typical of
work required athoddard Space Flight Center has been found to be
exceptionélly long and- inefficient in its APL form; that is to be
reirritten While the FORTRAN program is learned.

A paper, "The Use of APL to Investigate Sequential Machines" (2]
considered a number of programs which had already been developed by
other researchers to study a number of aspeéts of logical and’sequen-
tial machine theory. Even when modeling the orginal programs down to
the detail of the IO formats and console interactions the APL programs
were anywhere from 2.5 to 6 times as dense on the source statement
level than the BASIC and FORTRAN programs. This is of little meaning
however, éithphgh it is a source language comparison such as this which
is usually made, If even slight incompatibilities are allowed in IO,
then some\ratios go as high as 42 to 1. Further observations on a more

detailed level will be made about selective programs.

V. QOther Considerations
A part of our effort has been to study some microprogrammed pro-
cessors to examine the possibilities of imbedding an APL executing
engine 1in such a machine. This could either be a standard APL imple-
mentation or one of the "intelligent” variety as described by Abrams.
The primary line of investigation has been to examine a processor

which is under design and construction by Burroughs. Other than to



11

:feport our thoughts in these directions it is yet too early to make a

more de firiite statement.

References

[1] P. S. Abrams, "An APL Machine", Ph.D. Dissertation, Stanford Uni-

"~ versity, SLAC REPORT NO lll#,‘ Feb. 1970, AD Tob - Th4l.

[2] G. H. Foster, "Using APL to Investigate Sequential Machines",
NEREM-TO TO C 63 NEREM Technical Applications Sessions,

pp. 120-128.



